Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Current algorithmic fairness tools focus on auditing completed models, neglecting the potential downstream impacts of iterative decisions about cleaning data and training machine learning models. In response, we developed Retrograde, a JupyterLab environment extension for Python that generates real-time, contextual notifications for data scientists about decisions they are making regarding protected classes, proxy variables, missing data, and demographic differences in model performance. Our novel framework uses automated code analysis to trace data provenance in JupyterLab, enabling these notifications. In a between-subjects online experiment, 51 data scientists constructed loan-decision models with Retrograde providing notifications continuously throughout the process, only at the end, or never. Retrograde’s notifications successfully nudged participants to account for missing data, avoid using protected classes as predictors, minimize demographic differences in model performance, and exhibit healthy skepticism about their models.more » « less
-
In this research proposal, we outline our plans to examine the characteristics and affordances of ad transparency systems provided by 22 online platforms. We outline a user study designed to evaluate the usability of eight of these systems by studying the actions and behaviors each system enables, as well as users' understanding of these transparency systems.more » « less
-
In the context of data labeling, NLP researchers are increasingly interested in having humans select rationales, a subset of input tokens relevant to the chosen label. We conducted a 332-participant online user study to understand how humans select rationales, especially how different instructions and user interface affordances impact the rationales chosen. Participants labeled ten movie reviews as positive or negative, selecting words and phrases supporting their label as rationales. We varied the instructions given, the rationale-selection task, and the user interface. Participants often selected about 12\% of input tokens as rationales, but selected fewer if unable to drag over multiple tokens at once. Whereas participants were near unanimous in their data labels, they were far less consistent in their rationales. The user interface affordances and task greatly impacted the types of rationales chosen. We also observed large variance across participants.more » « less
An official website of the United States government

Full Text Available